Preconfigured DSP System for Hearing Aids

Description

RHYTHM[™] R3920 is a preconfigured hearing health processor based on the WOLVERINE[™] DSP platform. Featuring 16 channels of Wide Dynamic Range Compression and Impulse Noise Reduction, R3920 encompasses a rich set of advanced sound processing algorithms and is ideal for high end, full-featured hearing aids. The R3920 hybrid is available in one of the industry's smallest form-factors and is well-suited for all hearing aid types, including those placed deep in the ear canal.

Features and Benefits

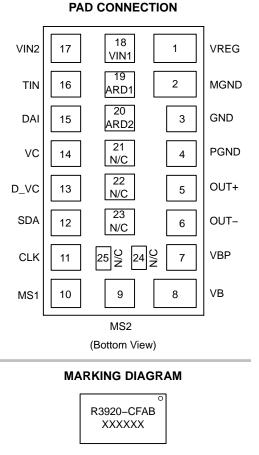
Wide Dynamic Range Compression (WDRC) – R3920 contains 16 Channels of Wide Dynamic Range Compression, each with individual settings for Squelch Attentuation and Threshold, Low Level Gain, High Level Gain, Upper and Lower Thresholds, and Compression Ratio. Independent level detectors for both Squelch and WDRC are available with customizable attack and release times set in each channel.

Impulse Noise Reduction (INR) – Loud, impulsive sounds in the environment such as slamming doors, dropped items, or clattering dishes can become uncomfortably or dangerously loud in a traditional hearing aid. The INR algorithm actively monitors and processes the incoming acoustic signal for such sounds. It ensures that the output sound preserves the integrity of the speech signal and is descriptive of the environment, while maintaining an optimal comfort level for the hearing aid user.

Acoustic Environment Classification – iSceneDetect^M analyzes incoming acoustic signals in order to determine the appropriate classification for a given acoustic environment. Six separate environments are supported by iSceneDetect: quiet, speech in quiet, noise, speech in noise, music, and wind. The feature uses this classification to automatically adjust settings of other features for optimum audio performance.

 $iLog^{M}$ 4.0 Datalogging – Enables the recording of various hearing aid parameters such as program selection, volume setting and ambient sound levels. The sampling interval can be configured to record from every 4 seconds up to once every 60 minutes. The manufacturer can program the fitting system to retrieve the data for further analysis after an extensive period of wearing the hearing aid. This allows the audiologist to fine tune the hearing aid and further counsel the end-user.

Automatic Adaptive Directionality – The Automatic Adaptive Directional Microphone (ADM) algorithm automatically reduces the level of sound sources that originate from behind or to the side of the hearing aid wearer without affecting sounds from the front. The algorithm can also gather input from the acoustic iSceneDetect environmental classifier algorithm and automatically select whether directionality is needed or not, translating into additional current savings.



ON Semiconductor®

www.onsemi.com

25 PAD HYBRID CASE 127DN

R3920–CFAB = Specific Device Code XXXXXX = Work Order Number

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

© Semiconductor Components Industries, LLC, 2014 November, 2014 – Rev. 2

Adaptive Feedback Canceller – Automatically reduces acoustic feedback. It allows for an increase in the stable gain while minimizing artifacts for music and tonal input signals. Additional tuning parameters make for more precise tuning of the algorithm to the hearing aid. The development tools for the R3920 offer a special calibration module to help assess the maximum stable gain in the hearing aid the manufacturer has built to further optimize the Adaptive Feedback Canceller algorithm.

Adaptive Noise Reduction – The Adaptive Noise Reduction algorithm monitors noise levels independently in 128 individual bands and employs advanced psychoacoustic models to reduce noise and provide user comfort. The algorithm can be set for varying levels of aggressiveness from 3 dB up to 12 dB.

Automatic Receiver Detection – For Receiver–in–Canal (RIC) devices with field replaceable receivers, R3920 allows manufacturers to code different receiver types so they are automatically recognizable in software, eliminating potential selection errors.

Tinnitus Masking – R3920 is equipped with a noise source that can be used to mask tinnitus. The noise can be shaped and attenuated and then summed into the audio path either before or after the volume control. A white noise signal is generated and inserted into the audio path either before or after the volume control. Filtering can be performed on the white noise signal in order to shape the noise signal to a desired frequency and bandwidth. The tinnitus masker can be used as a stand alone tinnitus making device or as part of a hearing aid.

EVOKE[™] Advanced Acoustic Indicators – Allows hearing aid manufacturers to provide more pleasing, multi–frequency tones simulating musical notes or chords to indicate events such as program or volume changes.

In–situ Tone Generator – The narrow–band noise stimulus feature can be used for in–situ validation of the hearing aid fitting. The frequency, level and duration of the stimuli are individually adjustable.

Other Key Features – R3920 also supports the following features: FrontWave[®] directional processing, built–in feedback path measurement, cross fading between audio paths for click–free program changes, 16–band graphic equalizer, 8 generic biquad filters (configurable as parametric or other filter types), programming speed enhancements, optional peak clipping, flexible compression adjustments, direct interfaces to analog or digital volume control, rocker switch, direct audio input and telecoil. Rhythm R3920 also encompasses industry–leading security features to avoid cloning and software piracy.

Support Tools

- Hybrid Jig
- DSP3 Programming Box
- ARK Software Support

Features

- 16 Channel WDRC
- Advanced Research Algorithms:
 - Impulse Noise Reduction (INR)
 - iSceneDetect Environmental Classification
 - Automatic Adaptive Directional Microphones (ADM)
 - FrontWave Directionality
 - ♦ 128-band Adaptive Noise Reduction
 - Next–Generation Adaptive Feedback Cancellation (AFC)
- iLog 4.0 Datalogging
- Tinnitus Masking Noise Generator
- Evoke Acoustic Indicators
- Auto Telecoil with Programmable Delay
- Feedback Path Measurement Tool
- AGC–O with Variable Threshold, Time Constants, and Optional Adaptive Release
- 16-band Graphic Equalizer
- Narrow-Band Noise Stimulus
- SDA or I²C Programming
- 8 Biquadratic Filters
- 4 Analog Inputs
- 16 kHz or 8 kHz Bandwidth
- 6 Fully Configurable Memories with Audible Memory Change Indicator
- 96 dB Input Dynamic Range with HRX[™] Headroom Extension
- 128-bit Fingerprint Security System and Other Security Features to Protect Against Device Cloning and Software Piracy
- High Fidelity Audio CODEC
- Soft Acoustic Fade between Memory Changes
- Drives Zero-Bias 2-Terminal Receivers
- Internal or External Digital Volume Control with Programmable Range
- Rocker Switch Support
- Support for Active Hi or Active Lo Switching
- 20-bit Audio Processing
- thinSTAX[®] Packaging
- E1 RoHS Compliant Hybrid
- These Devices are Pb-Free and are RoHS Compliant

Packaging Information

• Hybrid Typical Dimensions: 0.220 x 0.125 x 0.060 in. (5.59 x 3.18 x 1.52 mm)

BLOCK DIAGRAM

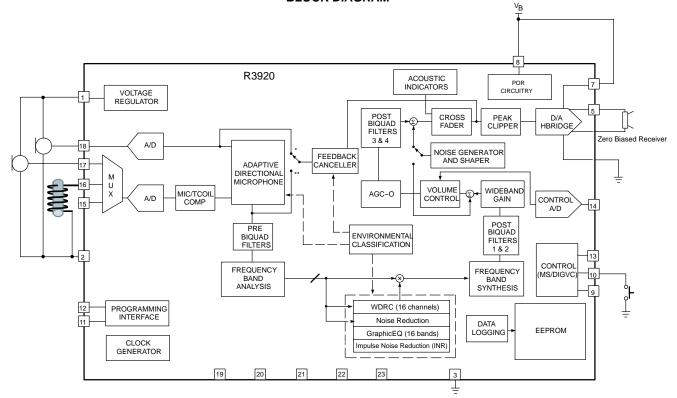


Figure 1. Hybrid Block Diagram

SPECIFICATIONS

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Value	Units
Operating Temperature Range	0 to +40	°C
Storage Temperature Range	-20 to +70	°C
Absolute Maximum Power Dissipation	50	mW
Maximum Operating Supply Voltage	1.65	VDC
Absolute Maximum Supply Voltage	1.8	VDC

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

WARNING: Electrostatic Sensitive Device - Do not open packages or handle except at a static-free workstation.

WARNING: Moisture Sensitive Device - RoHS Compliant; Level 4 MSL. Do not open packages except under controlled conditions.

Table 2. ELECTRICAL CHARACTERISTICS (Supply Voltage V_B = 1.25 V; Temperature = 25° C)

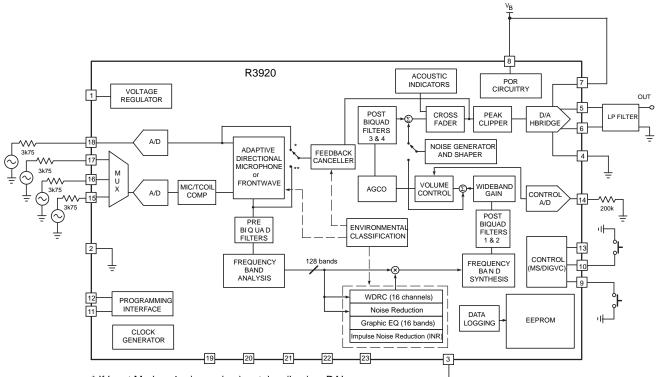
Parameter	Parameter Symbol Conditions		Min	Тур	Max	Units	
Minimum Operating Supply Voltage	V _{BOFF}	Ramp down, audio path	0.93	0.95	0.97	V	
		Ramp down, control logic	0.77	0.80	0.83		
Supply Voltage Turn On Threshold	V _{BON}	Ramp up, zinc–air	1.06	1.10	1.16	V	
		Ramp up, NiMH	1.16	1.20	1.24		
Hybrid Current		All functions, 32 kHz sampling rate	-	730	-	μΑ	
		All functions, 16 kHz sampling rate	-	620	-		
EEPROM Burn Cycles	-	-	100 k	-	-	cycles	
Low Frequency System Limit	-	_	-	125	_	Hz	
High Frequency System Limit	_	_	-	16	_	kHz	
Total Harmonic Distortion	THD	$V_{IN} = -40 \text{ dBV}$	-	_	1	%	
THD at Maximum Input	THDM	$V_{IN} = -15 \text{ dBV}, \text{HRX} - \text{ON}$	-	_	3	%	
Clock Frequency	ſclk	_	3.973	4.096	4.218	MHz	
REGULATOR	•			•	•	•	
Regulator Voltage	V _{REG}	_	0.87	0.90	0.93	V	
System PSRR	PSRR _{SYS}	1 kHz, Input referred, HRX enabled	-	70	-	dB	
INPUT						•	
Input Referred Noise	IRN	Bandwidth 100 Hz – 8 kHz	_	-108	-106	dBV	
Input Impedance	Z _{IN}	1 kHz	-	3	-	MΩ	
Anti-aliasing Filter Rejection	-	$f = [DC - 112 \text{ kHz}], \text{ V}_{IN} = -40 \text{ dBV}$	-	80	-	dB	
Crosstalk	-	Between both A/D and Mux	_	60	-	dB	
Maximum Input Level	_	_	-	-15	-13	dBV	
Analogue Input Voltage Range	V _{AN_IN}	V _{IN1} , V _{IN2} , Al	0	-	800	mV	
	V _{AN_TIN}	T _{IN}	-100	-	800		
Input Dynamic Range	-	HRX – ON Bandwidth 100 Hz – 8 kHz	_	95	96	dB	
Audio Sampling Rate	_	-	8	_	48	kHz	
OUTPUT							
D/A Dynamic Range	_	100 Hz – 8 kHz	_	88	-	dB	
Output Impedance	Z _{OUT}	_	_	10	13	Ω	

Table 2. ELECTRICAL CHARACTERISTICS	(Supply Voltage V _B = 1.25 V; Temperature = 25° C)
-------------------------------------	--

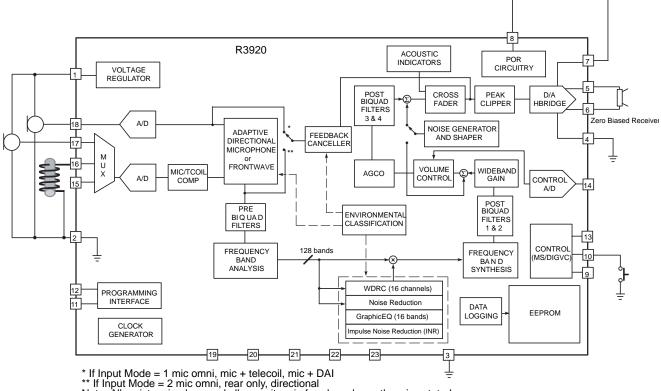

Parameter	Parameter Symbol Conditions		Min	Тур	Max	Units	
CONTROL A/D				•			
Resolution (monotonic)	-	_	7	-	-	bits	
Zero Scale Level	-	_	-	0	_	V	
Full Scale Level	-	_	-	V _{REG}	_	V	
VOLUME CONTROL							
Volume Control Resistance	R _{VC}	Three-terminal connection	200	-	1000	kΩ	
Volume Control Range	-	_	-	-	42	dB	
PC_SDA INPUT							
Logic 0 Voltage	-	-	0	-	0.3	V	
Logic 1 Voltage	-	-	1	-	1.25	V	
PC_SDA OUTPUT							
Stand-by Pull Up Current	-	Creftrim = 6	3	5	6.5	μΑ	
Sync Pull Up Current	-	Creftrim = 6	748	880	1020	μΑ	
Max Sync Pull Up Current	-	Creftrim = 15	-	1380	-	μΑ	
Min Sync Pull Up Current	-	Creftrim = 0	-	550	-	μΑ	
Logic 0 Current (Pull Down)	-	Creftrim = 6	374	440	506	μΑ	
Logic 1 Current (Pull Up)	-	Creftrim = 6	374	440	506	μΑ	
Synchronization Time	T _{SYNC}	Baud = 0	237	250	263	μs	
(Synchronization Pulse Width)		Baud = 1	118	125	132		
		Baud = 2	59	62.5	66		
		Baud = 3	29.76	31.25	32.81		
		Baud = 4	14.88	15.63	16.41	1	
		Baud = 5	7.44	7.81	8.20	1	
		Baud = 6	3.72	3.91	4.10	1	
		Baud = 7	1.86	1.95	2.05	1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 3, I²C TIMING


		Standard Mode		Fast Mode		
Parameter	Symbol	Min	Max	Min	Max	Units
Clock Frequency	f _{PC_CLK}	0	100	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD;STA}	4.0	-	0.6	-	μsec
LOW Period of the PC_CLK Clock	t _{LOW}	4.7	-	_	-	μsec
HIGH Period of the PC_CLK Clock	thigh	4.0	-	_	-	μsec
Set-up time for a repeated START condition	t _{SU;STA}	4.7	-	_	-	μsec
Data Hold Time: for CBUS Compatible Masters for I ² C-bus Devices	^t hd;dat	5.0 0 (Note 1)	_ 3.45 (Note 2)	_ 0 (Note 1)	 0.9 (Note 2)	μsec
Data set-up time	t _{SU;DAT}	250	-	100	-	nsec
Rise time of both PC_SDA and PC_CLK signals	tr	-	1000	20 + 0.1 C _b (Note 4)	300	nsec
Fall time of both PC_SDA and PC_CLK signals	t _f	_	300	20 + 0.1 C _b (Note 4)	300	nsec
Set-up time for STOP condition	t _{SU;STO}	4.0	-	0.6	-	nsec
Bus free time between a STOP and START condition	t _{BUF}	4.7	-	1.3	-	μsec
Output fall time from V_{IHmin} to V_{ILmax} with a bus capacitance from 10 pF to 400 pF	t _{of}	_	250	20 + 0.1 C _b	250	nsec
Pulse width of spikes which must be suppressed by the input filter	t _{SP}	n/a	n/a	0	50	nsec
Capacitive load for each bus line	Cb	-	400	_	400	pF

A device must internally provide a hold time of at least 300 ns for the PC_SDA signal to bridge the undefined region of the falling edge of PC_CLK.
The maximum t_{HD;DAT} has only to be met if the device does not stretch the LOW period (t_{LOW}) of the PC_CLK signal.
A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement t_{SU;DAT} P250ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the PC_CLK signal. If such a device does stretch the LOW period of the PC_CLK signal, it must output the next data bit to the PC_SDA line t_r max + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the PC_CLK line is released.
C_b = total capacitance of one bus line in pF.



TYPICAL APPLICATIONS

* If Input Mode = 1 mic omni, mic + telecoil, mic + DAI ** If Input Mode = 2 mic omni, rear only, directional Note: All resistors in ohms and all capacitors in farads, unless otherwise stated.

Figure 3. Test Circuit

Note: All resistors in ohms and all capacitors in farads, unless otherwise stated.

Figure 4. Typical Application Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
R3920–CFAB–E1T	25 Pad Hybrid Case 127DN	250 Units / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Tools Ordering Information

To order a Hybrid Jig Evaluation Board for Rhythm R3920 contact your Sales Account Manager or FAE and use part number SA3400GEVB.

To order the DSP3 Programming box use part number SU6701-E1.

PAD LOCATIONS

Table 4. PAD POSITION AND DIMENSIONS

	Pad P	osition	Pad Dimensions		
Pad No.	X	Y	Xdim (mil)	Ydim (mil)	
1	0	0	20	33	
2	-27	0	20	33	
3	-54	-5	20	23	
4	-81	-5	20	23	
5	-108	-5	20	23	
6	-135	-5	20	23	
7	-162	-5	20	23	
8	-189	0	20	33	
9	-189	42	20	23	
10	-189	85	20	23	
11	-162	85	20	23	
12	-135	85	20	23	
13	-108	85	20	23	
14	-81	85	20	23	
15	-54	85	20	23	
16	-27	85	20	23	
17	0	85	20	23	
18	0	42	20	23	
19	-27	42	20	23	
20	-54	42	20	23	
21	-81	42	20	23	
22	-108	42	20	23	
23	-135	42	20	23	
24	-162	26.5	18	12	
25	-162	53.5	18	12	

Table 4. PAD POSITION AND DIMENSIONS

Pad No.	Х	Y	Xdim (mm)	Ydim (mm)
1	0	0	0.508	0.838
2	-0.686	0	0.508	0.838
3	-1.372	-0.127	0.508	0.584
4	-2.057	-0.127	0.508	0.584
5	-2.743	-0.127	0.508	0.584
6	-3.429	-0.127	0.508	0.584
7	-4.115	-0.127	0.508	0.584
8	-4.801	0	0.508	0.838
9	-4.801	1.067	0.508	0.584
10	-4.801	2.159	0.508	0.584
11	-4.115	2.159	0.508	0.584
12	-3.429	2.159	0.508	0.584
13	-2.743	2.159	0.508	0.584
14	-2.057	2.159	0.508	0.584
15	-1.372	2.159	0.508	0.584
16	-0.686	2.159	0.508	
17	0	2.159	0.508	0.584
18	0	1.067	0.508	0.584
19	-0.686	1.067	0.508	0.584
20	-1.372	1.067	0.508	0.584
21	-2.057	1.067	0.508	0.584
22	-2.743	1.067	0.508	0.584
23	-3.429	1.067	0.508	0.584
24	-4.115	0.673	0.457	0.305
25	-4.115	1.359	0.457	0.305

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

iSceneDetect, iLog, RHYTHM, HRX, WOLVERINE and EVOKE are trademarks of Semiconductor Components Industries, LLC. thinSTAX, FRONTWAVE, and ARKonline are registered trademarks of Semiconductor Components Industries, LLC.

ON Semiconductor and the intervent and the intervent of the production of the property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under tights nor the rights of others. SCILLC products for any particular purpose, nor does y or other applications intended to support or sustain life, or for any other application in particular purpose, nor does or any or existent in the solution or use of any product or circuit, and convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the de

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative